An **enumeration** is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem.

Some sets can be enumerated by means of a **natural ordering** (such as 1, 2, 3, 4, … for the set of positive integers), but in other cases it may be necessary to impose a (perhaps arbitrary) ordering. In some contexts, such as enumerative combinatorics, the term *enumeration* is used more in the sense of *counting* – with emphasis on determination of the number of elements that a set contains, rather than the production of an explicit listing of those elements.

## . . . Enumeration . . .

In combinatorics, enumeration means counting, i.e., determining the exact number of elements of finite sets, usually grouped into infinite families, such as the family of sets each consisting of all permutations of some finite set. There are flourishing subareas in many branches of mathematics concerned with enumerating in this sense objects of special kinds. For instance, in *partition enumeration* and *graph enumeration* the objective is to count partitions or graphs that meet certain conditions.

In set theory, the notion of enumeration has a broader sense, and does not require the set being enumerated to be finite.

When an enumeration is used in an ordered list context, we impose some sort of ordering structure requirement on the index set. While we can make the requirements on the ordering quite lax in order to allow for great generality, the most natural and common prerequisite is that the index set be well-ordered. According to this characterization, an ordered enumeration is defined to be a surjection (an onto relationship) with a well-ordered domain. This definition is natural in the sense that a given well-ordering on the index set provides a unique way to list the next element given a partial enumeration.

The most common use of enumeration in set theory occurs in the context where infinite sets are separated into those that are countable and those that are not. In this case, an enumeration is merely an enumeration with domain *ω*, the ordinal of the natural numbers. This definition can also be stated as follows:

- As a surjective mapping from

We may also define it differently when working with finite sets. In this case an enumeration may be defined as follows:

- As a bijective mapping from
*S*to an initial segment of the natural numbers. This definition is especially suitable to combinatorial questions and finite sets; then the initial segment is {1,2,…,*n*} for some*n*which is the cardinality of*S*.

In the first definition it varies whether the mapping is also required to be injective (i.e., every element of *S* is the image of *exactly one* natural number), and/or allowed to be partial (i.e., the mapping is defined only for some natural numbers). In some applications (especially those concerned with computability of the set *S*), these differences are of little importance, because one is concerned only with the mere existence of some enumeration, and an enumeration according to a liberal definition will generally imply that enumerations satisfying stricter requirements also exist.

Enumeration of finite sets obviously requires that either non-injectivity or partiality is accepted, and in contexts where finite sets may appear one or both of these are inevitably present.

## . . . Enumeration . . .

*
This article is issued from web site Wikipedia. The original article may be a bit shortened or modified. Some links may have been modified. The text is licensed under “Creative Commons – Attribution – Sharealike” [1] and some of the text can also be licensed under the terms of the “GNU Free Documentation License” [2]. Additional terms may apply for the media files. By using this site, you agree to our Legal pages . Web links: [1] [2]
*